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FOREWORD

This report is the manuscript of a paper that will be presented before the

Division of High Polymer Physics of the American Physical Society in

St. Louis, March, 1963 and will subsequently be submitted for publication

in the Journal of Applied Phyacs.

The first part of this is identical with a part of our previous Technical

Report No. 25 on "The Relative Orientation of Crystalline and Amorphous
Regions in Polyethylene". In this paper, the approach initiated in this

manuscript is extended to three dimensions.



A GAUSSIAN THEORY OF ORIENTATION CORRELATIONS
IN CRYSTALLINE POLYMERIC SOLIDS*

RICHARD S. STEIN
POLYMER RESEARCH INSTITUTE

University of Massachusetts, Amherst, Mass.

INTRODUCTION

In an undrawn film of a crystalline polymer such as polyethylene, the crystals are arranged with an
average random orientation. This is a macroscopic average. Within small regions there is a preferential
orientation in a particular direction, but these small regions are randomly oriented with respect to each
other. Thus, the crystals would be arranged in a kind of domain structure similar to that which exists
in metals. The distinction between random and domain structures is shown in Figure 1. Light scatter-

ing studies frnm this laboratory 1,2,3 indicate that the principal cause of scattering from films of crystal-
line polyethylene is the refractive index heterogeneity produced by orientation fluctuations among such

domains. This interpretation is consistent with electror microscope observations 6 ,5 and with interpreta-

tions of low angle x-ray diffraction patterns. 6

From Fourier inversions of polarized light scattering data, one may obtain an orientation correlation
function f(r) which is defined in Eq. (1) 2,3,7

f (r)= 3 cos2 oii - 1r (1)

The polymer is considered to be subdivided into volume elements, each of which is small compared
with the wavelength of light. These may contain both crystalline and amorphous material. Because of

the preferred orientation of the polymer within these volume elements, they will be anisotropic. We will
assume that they have a cylindrical symmetry with a single unique direction or principal optic axis. 0..

is the angle between the optic axis of the ith volume element and that of the ith. The brackets in Eq.(1)

designate an average over all pairs of volume elements separated by a constant scalar distance, r. If
r - 0, it is apparent that the two volume elements become identical and must have parallel optic axes, so

that 0ij - 00 and f(r)= 1. Whereas, if r = a, 0 ij will assume random values, cos 2 0ij - 1/3, As that f(r)- 0..

Thus, f(r) decreases from I to 0 as r increases from 0 to o, as indicated in Fig. 2. The rate at which f(r)
decreases with increasing r determines the size of the domain of correlated orientation. For many systems,
the correlation functions may be fitted by the empirical equation S9

f(r)- exp (-/a) (2)

* Supported in part by contracts with the Office of Naval Research and the Atomic Energy Commission
and in part by grants from the Plax Corporation and the Petroleum Research Fund.
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where the parameter, a, is a measure of the domain size and is a persistence distance of orientation

correlation. The greater a, the larger the domain. It is found that a depends on the temperature of

crystallization and is of the order of 3000 A units for .a typical polyethylene sample. This is about

ten times larger than a single crystal and means that for an average distance of about five crystal

diameters away from a given crystal in any direction, there is a tendency for correlation in orientation.

This is somewhat analogous to the situation ex;sting in a liquid, where the radial distribution function
of density indicates crystal-like order for atoms close to a given atom, with a decrease in this order for

greater distances.
The mechanism for establishment of these domains is apparent in terms of current theories of polymer

crystal growth. 10-11 On cooling a melt, the growth is initiated by the formation of an homogeneous or
heterogeneous primary nucleus which rapidly grows to a size determined by the temperature of crystal-
lization and by the perfection of the polymer chain. The continuation of the crystallization is dependent
on the formation of more nuclei. It is easier, however, for these secondary nuclei to form in the vicinity
of the primary nucleus than elsewhere in the polymer. Two reasons proposed for this are: a) dendrites
emanating from the primary crystal or dislocations or surface imperfections serve as secondary nuclei 12,13

and, b) strains imposed upon the surrounding amorphous material render it more capable of crystallizing.
This nucleation growth mechanism results in crystals growing in clusters about primary nuclei rather

than randomly throughout the polymer, and is consistent with the observed spherulite formation. [Further-
more, it seems likely that these secondary nuclei will he preferentially oriented with respect to the

primary nuclei, so that there will be some "slop" in the transmission of orientation from me crystal to
the next, so that with increasing distance away from any crystal there will be a decrease in the correla-

tion of orientation. In fact, when this is extended to dimensions comparable with the size of a spherulite
(perhaps 100 to 1000 times the crystal size), this gives rise to circular symmetry of crystal orientation
rather than preferred orientation in any particular direction. Over distances of perhaps five crystal sizes
within the spherulite, however, there will be preferential orientation in a given direction, the orientation

becoming poorer with greater distance.

ONE DIMENSIONAL THEORY FOR f(r)

Consider a one-dimensional array of crystals (Fig. 3). Let crystal 0 be the primary nucleus in this
array which is oriented in the vertical direction at an angle of 0 = 00. The crystal adjacent to this,
crystal 1, tends to be parallel to crystal 0 but they differ in orientation by an amount 8. For simplicity,
we will assume that it will lie at an angle of + 8 or - 8 with respect to crystal 2. Thus, there will be

random fluctuations in the orientations of each crystal with respect to its nearest neighbor, but these
cannot exceed S. It is apparent that the correlation of orientation becomes poorer between the nth and

0th one as n increases, so that this model exhibits short range correlation of orientation, but long range
randomness. The probability that the nth crystal will make an angle of 0 with respect to the Oth one may

be solved by the classical "problem of the random walk".

Assume that the crystals are equally spaced a distance, d , apart. If the nth crystal is at a distance
r away from the 0th crystal, the number of intervals between the nth crystal and the 0th crystal is given

by
r
d 

(3)
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Since for each of these intervals the angle 0 will change by either + 8 a -8 the total change in 0 during

the interval, r, will depend upon the difference between the number of + 8 and - 8 changes. Let us call

this difference n.

z = (A+) - (a - (4)

so that the angle of the nth crystal is given by

O nxB (5)

The probability of a given number of n+ and n for a total number of steps, n, is obtained by the usual
"random walk" statistics 14 and is given by

P() Cn!r Cn!

(n+)! (.-)! [n+ X7[n x] (6)

where C is a constant of proportionality. By using Stirling's approximation, one obtains the usual result

P(%) - exp (-x2 / 2n) (7)

The average value for cos2 0 for two volume elements separated by distance r corresponding to the n steps

is given by*

<os2On.>= S conOn P(z) dz

~0P(x)d (8

On using Eq. (5) for On and Eq. (7) for P(x), one gets

< 2 n co2 (x 8)e /2"

e-X
2 /2n dX

+ e -2n82] (9)

If one uses Eq. (3) for a and substitutes the parameter a defined by

d

282 (10)

then one obtains

<=o2 - [ + e1r/  ( 1)

*The integration should actually be between the limits of x- + w/5 . However, it is assumed that
exp ( -x2/2n] decreases sufficiently rapidly with increasing x that negligible crror will be made
in integrating to + w .
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From this, it is apparent that the average of cos 2 0 varies from 1 at r - 0 (indicating parallel orientation
of the crystals) to 1/2 at r - -- (indicating random orientation). An average of co*2 0 - 1/2 where 0 varies
in a plane corresponds to random orientation; that is, no correlation in orientation of the crystals. For
planar variations of angles, the orientation function defined in Eq. (1) should be replaced by

f(r)- 2 co.2 ,_ 1>' (12)

so that f(r) varies from I to 0 as cos 2 0 average varies from 1 to 1/2. On using the value of cos 2 0 from
Eq.(11) in this, one obtains for f(r)

f (r) = _ . ..-r /a (

which is identical with Eq. (2). The correlation distayrce, a, now defined by Eq. (10) is a quantity which

is proportional to the intercrystalline distance which varies with crystal size and which varies inversely
with S. (The uncertainty in orientation of adjacent crystals.)

EXTENSION TO THREE DIMENSIONS

For three-dimensional correlation, a cubical lattice model will be used where each cell has dimension
d (Fig. 4). The scattering elements will again be assumed to be aniaxial and characterized by the orien-
tation of their optic axes. Consider two volume elements O and n lying along the same lattice row and
separated by a distance r - n d. We will assume that crystals in adjacent lattice cells may differ in orienta-
tion by a small angle 8, as before, but that an azimuthal angle 9S (Fig. 5) may assume all values with equal
probability. Let ao, a P 2 1 . .*... anbe unit vectors in the 0th, 1st, 2nd and nth cells pointing in the
optic axis direction. The angle 0on between the vectors a, and On may then be obtained from

con 00 = (a0 . an) (14)

and the orientation function may be obtained from

f(rn) = (a.a n )2 _1

2 (15)

The averaging is over all internal rotation angles r/i weighted equally.
The vector aI may be obtained from a, by

a .T1 I o (16)

where T1 is the transformation matrix given by Is



coe a - sin8 Como, sin8 sino

TI sin8 c68 cosl -Coss .ino1  (17)
0 sino I  Coa84 1

Similarly, 02 - I T2 01 IT2I IT1 I Go (18)
and an . ITn ITn 1 IT21 TI I. (19)

where

Con 8 - in8 cosi m"in8 sino i

Ti  sin 8 co8 cosqi -coss sin Oi (20)
0 sin Oi  cos c i.

Since Go is a unit vector in the x direction or I

(a00 . an)2 . [ .1 TnI IT_ Ii . . ] ITI 1 2 (21)

In terms of summation notation, this is given by

(ao'an)2  ~ ,1,k...sI[a1  (a _1 [ ij (ak '.-2... [alt] 2 [at, ] (22)

whr aI lis the i h element of the (n-i)th transformation matrix ITn-1i
If the azimuthal angles ii, vary randomly and independently of each other, averages of the cross-

products of the square of the above sum vanish giving (Appendix 1)

(a = 2 1  
(23)

where

cos 2 8 sin2 8 c 2  n- i 2 I
= c s 2 B s i n -

n -I sin 2  8 cos0 8 cos .-1 2 8 n -0 s on o cos2nln l

cos28 1/2 sin2 8 1/2 sin2 8
sin2 8 1/2 cos28 1/2 co. 2 8 - (24)

0 1/2 1/2



This matrix is independent of a so that

I/ In-] I *jkIn"' =lt I BI (25)

Thus.

(T- ) - jl°OIBI- 1i (26)

where, for example,

B - a,12 aik- 7(27)
i

where Bik 2 is the ikth element of the matrix IBI 2
Ile evaluation of Eq. (26) requires the development of a general expression for IBI m. For this

purpose, it is convenient to make the substitutions

X - .in2 a

(i-X)- co. 2 8 (28)

where x is small. Then Eq. (24) becomes

1/2(1-x) 1/2(-x)

L 1/2 1/2 J

r1 0 0 -1 1/2 1/2
= 0 1/2 1/2 + 1 -1/2 -1/ 2

0 1/2 1/2 0 0 0

-JA 0j +. 1AIJ x (29)

where 1 l
1 0 0

i A.l 1 1/2 1/2 (30)
100 1/2 1/2

and

-1 1/2 1/2

- 0 J (31)
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11312 -(iAJ + II (IAJ + AilJ
- IAoJIAJ +IAIIAJ . + 1AoIAll x + 1A1I A11 X2

- A01
2 + 1A11 JAJI + A 1 AII1  x +1AI 2 x2 (32)

Similarly, JB I - AJ3 + (A ol 2 1AjI + IA1! 1A 1  2 + IA1IA I ) x

.IA11 1~A0 A1  + I A.1 1A11 2 + 1A11 2 IA. 1) X2 +IA11! ,3 (3

The value of IAnIm may be obtained inductively since

100 110 01[ 001
IAo0 2 0 1/2 1/2 0 1/2 1/2 0 1/4 1/4

0 1/2 1/2 0 1/2 1/2 01/4 1/4 (34)

and

[1 001
lI - 0 (1/Om(1/2)m

Lo( 1/2)m (1/2)m (35)

Similarly

1All2 1 -1/2 -1/2 ][ -1/2 -1/2 3/2 3/4 3/4] (36)0 0 0 0 0 0 0o

jA 1 3 F 1/2 1/2 1 3/2 -3/4 -. 3/4 -i9/4 9/8 9/8~

II' 1 -1/2 -1/2 1-3/2 3/4 3/ 9/4~ -9/8 -9/8 (7
0 0 o 0 0o 0  0 0

and generally

-(-3/2)m- 1  1/2(-3/2)m- 1 1/2(-3/2)m-1

IAll mL (:/2)m- -1 /2(-3/2)m-1 -1/2(-3/2)m-1j (38)

00 0
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The product

-1 1/2 1/2 1 0 0 -1 1/2 1/2
JA1 AJ 1 -1/2 -/2 0 1/2 / -1/2 -1/2 - , 1A1 (

0 0 j 0 1/2 1/2 L0
Continuing

1A,1 JAo 2 "(IAIIA 0 1 Ao " I All 1A.1 - IA1l (40)

Generally

1A1l 1Ao1 m - IAI (41)

and

IAoJ n ]AIl 1A.1 m - JAoJ n JI)l (42)

Applying these results to (32) and (33) one obtains

I1B2= 2 AJo2 + (1 + 1Aj ) IA1l - + IA112 .2 (43)

and

I B13 =A01 3 + (1 +[Ao + 1A. 1 2) IAII x + (2 +1A1 AII 2X2+ A113 x3 (44)

Extending this procedure gives

B14 _ iA14 + (I1 + (A01 + 1A.1 2 +AOI 3)1All x+ (3+2 1A01

+IAn1 2)1A1 2 .2 + ( +IA0 1AI A1 3 .3 +IA, 14 . 4  (45)

leading to the general case

11 I A.1-m+[I1A01m-1 +IA1m-2 + .+ 14 + 11]IAiI

+[IAo.-2 +21Aojm- 3 + 31AJm - 4 +...+ (m-l)]A,1
2 x2

+rlolm-3 +, 31 im,+ 4 IMom- Al3
{A h+-- I A0Im + 41 IAlm5+ ..,+ ~(M-1) 1 -j A113 x

11 21 22!+ + (m-3)121-v x

{IkA"m-4 + - IAIm-5 + 5 IAom-6 + ... + (n-I)i J.AI 14,4
1131 213!(m413

+......... + AIlm xm (46)

By substituting this result into Eq. (26), one obtains a result of the form

(no • a n+ )2 Fo+Flx+F 2 x2 +... (47)
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where

-If(1-x) ,< ol 0(1/2)11(1/211/,< /

F 1l-x x (48)
-t(-x) x ol 1(02 1

(1/2)n xJ

_ (1-x) 2 + (1/2) n X2

- 1-2x + [I-(1/2)n ] x2 .1-2x+x 2  (49)

Similarly for large n

F - 1(1.) x 01 ICJ IAI [1;0j

where

Cl-I1+ oA1 + IAo2 +IA j'+.

0]+ 1/4[I 1/2 1/ 4 ...
[0 1 01/4 1/4

-1 a a1

0 0 1 01 /2 1/2J+[ 1/4 1/4.

L0  1  a 1

and a1 I I+1/2+1/4+1/8+ .... 2 (51)

and
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[""][ 'i"L0

" L(l-x)- 1/2 _ "j U- 1 /2x' (52)

lo I - 0 0 0

C11-+ !I (- + 3/2 )

F (1-x) - -x - ( 3

s o (-1 + 3/2 x + x -3/2 x2 )+ 2 x - 3 x

=-n (l-5/2 I+ 3/2 x ) 2 - x ) 54

SimilarlyF2"(- x 0 C2A 2  l 1

F2 -j(1-x) ~ ~ -l 3CH1 1x I

LoJ (ss)

where
C2 - l(n-l)+(n-2)kAo. (n-3) (53)

- ni 1 + (n-2) + [n3 + ...I~1 0 /2 1/2 11/4 3/4

2 [2 (56)
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and a2 - (n - 1) + (n - 2) + (n - 3) +.. +1 - a (n - 1)/2 (57)

and 3 - (n - 1) + (a - 2) (1/2) + (a -3) (1/2)2 + . m -2 4 (58)

Evaluation of (55) in the same manner as used for F1 then gives

F2 -[9/8x 2 - 15/ 8 x+3/41 n2 +(27/8x2 - 9/8x - 3/4]n+ [ _9x2+6x] (59)

ContinuingF 3 .s(l.x)x Ot c31 1AI1 3  [1lx(6

F 3 -- x0 1 I ) I I (6 0 )

where

Ic31 1/2 n -1) (n - 2)+ (n - 2) (n - 3)oA01+ (n -3)(n -4) Aol 2 .

as 0 0

-1/2 0 u 5

L0 6a 6  (61)

and

s5 -1-2 +2"3 +3.4 +...+(n-1)(m-2)- n(n-1)(n-2)/3 (62)

s6  (n- 1) (n - 2)+ (n -2) (n -3) (1/2)+ (n-3) (n-4) (1/2)2+.

-2n2  10n+16 (63)

This leads to

F3 - 1/21[-9/8x 2 + 15/8x-3/4]n 3

+ [-27/8 x2 - 9/8 x + 9/4] n2 + (63/2 x2 - 75/4 x - 3/2 ] a

+[-54x2 +36x 11 (64)

Upon substituting those results in Eq. (47) one obtains after rearranging and retaining powers of x
up to x3
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(0 .. ,+1)2 -[1-2x+ax 2 +3x 3]-(1 -7/4x-S/8x 2 ](xn)

+ (3/4 - 3/2 xI (S n) 2 - [3/8] (x ) + . . (65)

For small x where x < < 1 , the higher terms of the polynomial coefficient@ may be neglected leading
to the approximation

(00 . a+i)2  I-xn +3/4(xn) 2 -3/8(xn 3 .,, (66)

The orientation function is then obtained using Eq. (15)

f(r + ) -- 3/2xn + 9/8 (xn)2 
- 9/16 (x n )3 (67)

If a - 3/2 x n (68)

this becomes

f (r n+ 1) 1-a+ a 2/2 1- a3/3 1+ (69)

which is identical with the series expansion for

f (rn + 1-e -a (70)

Now

rn + 1 rn-nd (71)

and

x - sin2 8 . 82 (72)

for small 8. Thus,

a - 3/2 x n - 3/2 82 rn/d -(3/2 82 /d) r (73)
so

f(r) . e - (3/2 8 2 /d) r (74)

It is apparent that this result is in the form of the Debye-Bueche exponential correlation function

f(r) - e -r/a (7S)

where the correlation distance

a- 2d/38 2 (76)
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eh differs from the two-dimensional correlation distance given by Eq.(l0) only in the numerical
factors. It is reasonable that the correlation distance should increase with increasing crystal size,
d and with decreasing intercrystalline angle S. For a typical crystal size of 100 X and a value of
82 of 0.01, one obtain@ a correlation distance, a,of 6000 A which is of the order of magnitude found

experimentally. The value of 82 - .01 corresponds to 6 - 0.1 radians or about 60 which appears
reasonable. For this value, x - sin2 8 . 82 - .01 so that the neglect of terms in x in the polynomial
coefficients of Eq. (65) is justified.

It should be pointed out that the exponential correlation function of Eqs.(74 and 75) is a limiting
form valid for large n and small 8. The approximations which led to this form (such as the neglect
of the coefficients in higher powers of x in Eq. (65)) were not made for necessity, but for simplicity;
and it may be desirable to use the more exact result for systems of "coarse" structure where the
crystal size, d, is large,

The increase in correlation distance upon annealing and the decrease upon quenching which has
been found experimentally may be understood qualitatively, at least, in terms of the corresponding
change in the crystal size, d , under these conditions. A quantitative investigation of this relation-
ship should be of interest.

The deviation just given applies only to the case in which the volume elements are separated from
each other along the direction of the lattice row. However, the lattice is an artifact of the calculation
and not a property of the material. Consequently the lattice direction is completely arbitrary, and the

result should be valid for volume elements having a line of separation in any direction.



APPENDIX I

Consider the special came

( iia) [ ( i i j 2 J

Now let

Ogil .Y"[aij]2 [aji] 1

or

1BI- 1 T2 1 I a 2

o 8 -sin 8 cos'02 sin 8 s 0 2 coo 8
sin 8 coso 0 2  -cos 8 sin 02 sin 8

0 ~sin (hco 0

0oo22 - sin28 co8'02

sin8 cos8 + sin8 coa cos48 2  (AI-2)

sLna sin 02

Similarly

y1= , [ ali'3 [Pill

103or C .aiiaiI [ j

L cos28 - sin 28 cos 0 2= 1cos8 - sin8 cosqS3 sin8 sin qS3 I sin8 cos8 + sin8 cos8 cos4 2

I sinS sin0s2

- cos 3 8 -sin 2 8 co88 cosin 2 -sin 2 8 co8 cos0 3 -sin 28s co8 cos60 2 co80 3

+ sin28 sin0b2 sin 3 (AI-3)
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Then ( . ?3) - C2

. co 68 + sin4a cos2 8 - + 02 48 C os-" 3

+ sin 4 8 co@28 cos 2 0 2 co9 2 153 + sin4a sin292 sin2*

-2 sin 2 8 cos 4 8 7os-i 2 - 2 in28 cos 4 8 cocI 3

- 2 sin28 co. 48 co8h 2 cos0 3 + 2 sih 28 coe38 sin6 2 sin0 3
+ sin4a co28 + 2 sin4 8 cos 28 -

.nS cos2  C50 2 CO5 3  8 Co c 'TO2 c"0~3
- 2 sin 4 8 cosa sin0,2 cos 2 sin 3 + 2 sin 48 c0s2a co80 2 cos 2 

3

- 2 sin4 8 cos8 sin0 2 cos0 2 cosq 3 - sin 4 8 co8 s'n0b2 cosqS 2 sinq&3 coes 3  (AI-4)

Since the 6i's vary randomly and are not correlated with each other

sin 2 i - cos2 Oi - 1/2 (AI-5)

and

ki s iin2(h i sin2o i sin2qsj f cos2= i cos2 Oj =c cos 2 j = 1/2 1 1/2 = 1/4 (AI-6)

sinni coso i - sino cost isinn o (AL-7)

=sin q5i cosn -0

Thus, the cross-product terms are all zero and

(0 . a3)2 = cos 6 8 + 5/4 sin 48 cos 28 + 1/4 sin48 (AI-8)

Since the cross-products vanish, the same result may be obtained by squaring the matrix elements and

averaging them before multiplying. That is:

(0o0 03)2 " X [a-l 2 13 [a21 [aj12 1 (A-9)
3 i

where, for example, r C0828 sin2 8 c08 si28 2

= 2 ~ _= cos2 8zC.S i '[ 0 sin 02 cos 2
0828  1/2sin 28 1/2sin281

sin 28 1/2cos28 1/2cos 28 (A-10)

0 1/2 1/2 J
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so

-OM2 8 //2e"nn8 1" / 28 i/2u 2 2
(so V2 - )co@28 1/2u@08 1/2.0n81 808u2 i/2cou,2 8 i/2cos 28 sia28

[0 1/2 1/2 0J

Fcos48 + 1/2 sin48
- c0028 1/2sin 28 1/2a1. 2 8 3/2 sin28 co*2BI

L 1/2 ,in28 J

- co 68 + 1/2ein48 co 2 B + 3/4 sin2B co, 28 + 114sin4 5

- co 68+ 5/4sin'8 co# 2 8 + 1/4@in48 (Al-li)

ThI. Is identical with Eq.(AI-8) verifying the identity of Eqs.(Al-i) and (AI-9). These are a special cao,
of Eq.. (22) snd (23) which may be proved by an extension of the above procedure.
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CAPTIONS FOR FIGURES

1. Random and correlated orientation fluctuation.

2. The variation of the orientation correlation function f(r) with r.

3. Random walk correlation in one-dimension

4. The lattice model for correlated orientation.

5. Random walk correlation with angular fluctuations in three dimensions.
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